import copy import time from pathlib import Path from threading import Lock from typing import Optional, List, Tuple from app import schemas from app.chain import ChainBase from app.core.config import settings from app.core.context import Context, MediaInfo from app.core.event import eventmanager, Event from app.core.meta import MetaBase from app.core.metainfo import MetaInfo, MetaInfoPath from app.helper.aliyun import AliyunHelper from app.helper.u115 import U115Helper from app.log import logger from app.schemas.types import EventType, MediaType from app.utils.singleton import Singleton from app.utils.string import StringUtils recognize_lock = Lock() class MediaChain(ChainBase, metaclass=Singleton): """ 媒体信息处理链,单例运行 """ # 临时识别标题 recognize_title: Optional[str] = None # 临时识别结果 {title, name, year, season, episode} recognize_temp: Optional[dict] = None def meta_nfo(self, meta: MetaBase, mediainfo: MediaInfo, season: int = None, episode: int = None) -> Optional[str]: """ 获取NFO文件内容文本 :param meta: 元数据 :param mediainfo: 媒体信息 :param season: 季号 :param episode: 集号 """ return self.run_module("meta_nfo", meta=meta, mediainfo=mediainfo, season=season, episode=episode) def recognize_by_meta(self, metainfo: MetaBase) -> Optional[MediaInfo]: """ 根据主副标题识别媒体信息 """ title = metainfo.title # 识别媒体信息 mediainfo: MediaInfo = self.recognize_media(meta=metainfo) if not mediainfo: # 尝试使用辅助识别,如果有注册响应事件的话 if eventmanager.check(EventType.NameRecognize): logger.info(f'请求辅助识别,标题:{title} ...') mediainfo = self.recognize_help(title=title, org_meta=metainfo) if not mediainfo: logger.warn(f'{title} 未识别到媒体信息') return None # 识别成功 logger.info(f'{title} 识别到媒体信息:{mediainfo.type.value} {mediainfo.title_year}') # 更新媒体图片 self.obtain_images(mediainfo=mediainfo) # 返回上下文 return mediainfo def recognize_help(self, title: str, org_meta: MetaBase) -> Optional[MediaInfo]: """ 请求辅助识别,返回媒体信息 :param title: 标题 :param org_meta: 原始元数据 """ with recognize_lock: self.recognize_temp = None self.recognize_title = title # 发送请求事件 eventmanager.send_event( EventType.NameRecognize, { 'title': title, } ) # 每0.5秒循环一次,等待结果,直到10秒后超时 for i in range(20): if self.recognize_temp is not None: break time.sleep(0.5) # 加锁 with recognize_lock: mediainfo = None if not self.recognize_temp or self.recognize_title != title: # 没有识别结果或者识别标题已改变 return None # 有识别结果 meta_dict = copy.deepcopy(self.recognize_temp) logger.info(f'获取到辅助识别结果:{meta_dict}') if meta_dict.get("name") == org_meta.name and meta_dict.get("year") == org_meta.year: logger.info(f'辅助识别结果与原始识别结果一致') else: logger.info(f'辅助识别结果与原始识别结果不一致,重新匹配媒体信息 ...') org_meta.name = meta_dict.get("name") org_meta.year = meta_dict.get("year") org_meta.begin_season = meta_dict.get("season") org_meta.begin_episode = meta_dict.get("episode") if org_meta.begin_season or org_meta.begin_episode: org_meta.type = MediaType.TV # 重新识别 mediainfo = self.recognize_media(meta=org_meta) return mediainfo @eventmanager.register(EventType.NameRecognizeResult) def recognize_result(self, event: Event): """ 监控识别结果事件,获取辅助识别结果,结果格式:{title, name, year, season, episode} """ if not event: return event_data = event.event_data or {} # 加锁 with recognize_lock: # 不是原标题的结果不要 if event_data.get("title") != self.recognize_title: return # 标志收到返回 self.recognize_temp = {} # 处理数据格式 file_title, file_year, season_number, episode_number = None, None, None, None if event_data.get("name"): file_title = str(event_data["name"]).split("/")[0].strip().replace(".", " ") if event_data.get("year"): file_year = str(event_data["year"]).split("/")[0].strip() if event_data.get("season") and str(event_data["season"]).isdigit(): season_number = int(event_data["season"]) if event_data.get("episode") and str(event_data["episode"]).isdigit(): episode_number = int(event_data["episode"]) if not file_title: return if file_title == 'Unknown': return if not str(file_year).isdigit(): file_year = None # 结果赋值 self.recognize_temp = { "name": file_title, "year": file_year, "season": season_number, "episode": episode_number } def recognize_by_path(self, path: str) -> Optional[Context]: """ 根据文件路径识别媒体信息 """ logger.info(f'开始识别媒体信息,文件:{path} ...') file_path = Path(path) # 元数据 file_meta = MetaInfoPath(file_path) # 识别媒体信息 mediainfo = self.recognize_media(meta=file_meta) if not mediainfo: # 尝试使用辅助识别,如果有注册响应事件的话 if eventmanager.check(EventType.NameRecognize): logger.info(f'请求辅助识别,标题:{file_path.name} ...') mediainfo = self.recognize_help(title=path, org_meta=file_meta) if not mediainfo: logger.warn(f'{path} 未识别到媒体信息') return Context(meta_info=file_meta) logger.info(f'{path} 识别到媒体信息:{mediainfo.type.value} {mediainfo.title_year}') # 更新媒体图片 self.obtain_images(mediainfo=mediainfo) # 返回上下文 return Context(meta_info=file_meta, media_info=mediainfo) def search(self, title: str) -> Tuple[Optional[MetaBase], List[MediaInfo]]: """ 搜索媒体/人物信息 :param title: 搜索内容 :return: 识别元数据,媒体信息列表 """ # 提取要素 mtype, key_word, season_num, episode_num, year, content = StringUtils.get_keyword(title) # 识别 meta = MetaInfo(content) if not meta.name: meta.cn_name = content # 合并信息 if mtype: meta.type = mtype if season_num: meta.begin_season = season_num if episode_num: meta.begin_episode = episode_num if year: meta.year = year # 开始搜索 logger.info(f"开始搜索媒体信息:{meta.name}") medias: Optional[List[MediaInfo]] = self.search_medias(meta=meta) if not medias: logger.warn(f"{meta.name} 没有找到对应的媒体信息!") return meta, [] logger.info(f"{content} 搜索到 {len(medias)} 条相关媒体信息") # 识别的元数据,媒体信息列表 return meta, medias def get_tmdbinfo_by_doubanid(self, doubanid: str, mtype: MediaType = None) -> Optional[dict]: """ 根据豆瓣ID获取TMDB信息 """ tmdbinfo = None doubaninfo = self.douban_info(doubanid=doubanid, mtype=mtype) if doubaninfo: # 优先使用原标题匹配 if doubaninfo.get("original_title"): meta = MetaInfo(title=doubaninfo.get("title")) meta_org = MetaInfo(title=doubaninfo.get("original_title")) else: meta_org = meta = MetaInfo(title=doubaninfo.get("title")) # 年份 if doubaninfo.get("year"): meta.year = doubaninfo.get("year") # 处理类型 if isinstance(doubaninfo.get('media_type'), MediaType): meta.type = doubaninfo.get('media_type') else: meta.type = MediaType.MOVIE if doubaninfo.get("type") == "movie" else MediaType.TV # 匹配TMDB信息 meta_names = list(dict.fromkeys([k for k in [meta_org.name, meta.cn_name, meta.en_name] if k])) for name in meta_names: tmdbinfo = self.match_tmdbinfo( name=name, year=meta.year, mtype=mtype or meta.type, season=meta.begin_season ) if tmdbinfo: # 合季季后返回 tmdbinfo['season'] = meta.begin_season break return tmdbinfo def get_tmdbinfo_by_bangumiid(self, bangumiid: int) -> Optional[dict]: """ 根据BangumiID获取TMDB信息 """ bangumiinfo = self.bangumi_info(bangumiid=bangumiid) if bangumiinfo: # 优先使用原标题匹配 if bangumiinfo.get("name_cn"): meta = MetaInfo(title=bangumiinfo.get("name")) meta_cn = MetaInfo(title=bangumiinfo.get("name_cn")) else: meta_cn = meta = MetaInfo(title=bangumiinfo.get("name")) # 年份 release_date = bangumiinfo.get("date") or bangumiinfo.get("air_date") if release_date: year = release_date[:4] else: year = None # 识别TMDB媒体信息 meta_names = list(dict.fromkeys([k for k in [meta_cn.name, meta.name] if k])) for name in meta_names: tmdbinfo = self.match_tmdbinfo( name=name, year=year, mtype=MediaType.TV, season=meta.begin_season ) if tmdbinfo: return tmdbinfo return None def get_doubaninfo_by_tmdbid(self, tmdbid: int, mtype: MediaType = None, season: int = None) -> Optional[dict]: """ 根据TMDBID获取豆瓣信息 """ tmdbinfo = self.tmdb_info(tmdbid=tmdbid, mtype=mtype) if tmdbinfo: # 名称 name = tmdbinfo.get("title") or tmdbinfo.get("name") # 年份 year = None if tmdbinfo.get('release_date'): year = tmdbinfo['release_date'][:4] elif tmdbinfo.get('seasons') and season: for seainfo in tmdbinfo['seasons']: # 季 season_number = seainfo.get("season_number") if not season_number: continue air_date = seainfo.get("air_date") if air_date and season_number == season: year = air_date[:4] break # IMDBID imdbid = tmdbinfo.get("external_ids", {}).get("imdb_id") return self.match_doubaninfo( name=name, year=year, mtype=mtype, imdbid=imdbid ) return None def get_doubaninfo_by_bangumiid(self, bangumiid: int) -> Optional[dict]: """ 根据BangumiID获取豆瓣信息 """ bangumiinfo = self.bangumi_info(bangumiid=bangumiid) if bangumiinfo: # 优先使用中文标题匹配 if bangumiinfo.get("name_cn"): meta = MetaInfo(title=bangumiinfo.get("name_cn")) else: meta = MetaInfo(title=bangumiinfo.get("name")) # 年份 release_date = bangumiinfo.get("date") or bangumiinfo.get("air_date") if release_date: year = release_date[:4] else: year = None # 使用名称识别豆瓣媒体信息 return self.match_doubaninfo( name=meta.name, year=year, mtype=MediaType.TV, season=meta.begin_season ) return None def scrape_metadata_online(self, storage: str, fileitem: schemas.FileItem, meta: MetaBase, mediainfo: MediaInfo): """ 远程刮削媒体信息(网盘等) """ def __list_files(s: str, f: str): if s == "aliyun": return AliyunHelper().list(parent_file_id=f) if s == "u115": return U115Helper().list(parent_file_id=f) return [] def __upload_file(s: str, p: str, f: Path): if s == "aliyun": return AliyunHelper().upload(parent_file_id=p, file_path=f) if s == "u115": return U115Helper().upload(parent_file_id=p, file_path=f) if storage not in ["aliyun", "u115"]: logger.warn(f"不支持的存储类型:{storage}") return filepath = Path(fileitem.path) if mediainfo.type == MediaType.MOVIE: if fileitem.type == "file": # 电影文件 movie_nfo = self.meta_nfo(meta=meta, mediainfo=mediainfo) if not movie_nfo: logger.warn(f"无法生成电影NFO文件:{meta.name}") return # 写入到临时目录 nfo_path = settings.TEMP_PATH / f"{filepath.stem}.nfo" nfo_path.write_bytes(movie_nfo) # 上传NFO文件 __upload_file(storage, fileitem.parent_fileid, nfo_path) else: # 电影目录 files = __list_files(storage, fileitem.fileid) for file in files: self.scrape_metadata_online(storage=storage, fileitem=schemas.FileItem(**file), meta=meta, mediainfo=mediainfo) else: # 电视剧 if fileitem.type == "file": # 电视剧文件 tv_nfo = self.meta_nfo(meta=meta, mediainfo=mediainfo, season=meta.begin_season, episode=meta.begin_episode) if not tv_nfo: logger.warn(f"无法生成电视剧NFO文件:{meta.name}") return # 写入到临时目录 nfo_path = settings.TEMP_PATH / f"{filepath.stem}.nfo" nfo_path.write_bytes(tv_nfo) # 上传NFO文件 __upload_file(storage, fileitem.parent_fileid, nfo_path) else: # 根目录 tv_nfo = self.meta_nfo(meta=meta, mediainfo=mediainfo) if not tv_nfo: logger.warn(f"无法生成电视剧NFO文件:{meta.name}") return # 写入nfo到根目录 nfo_path = settings.TEMP_PATH / f"tvshow.nfo" nfo_path.write_bytes(tv_nfo) # 上传NFO文件 __upload_file(storage, fileitem.fileid, nfo_path) # 递归刮削目录内的文件和子目录 files = __list_files(storage, fileitem.fileid) for file in files: self.scrape_metadata_online(storage=storage, fileitem=schemas.FileItem(**file), meta=meta, mediainfo=mediainfo)